
I
I

4 ~.UR-80-3642

.~m CDm-%lmv=c--l

TITLE: A METAFILEFOR EFFICIENT SEWENTIALAND RANDOMDISPLAY OF.
GRAPliICS

AUTHOR(S): Theodore Nile(; Reed

SUBMI’ITED TO: SIGGMPH ‘ 81
Dallas, Texas
August 3 to 7, 1981

(’
By mcceptuwe of this wtlck. tba pu~r m
Cqnixa th,l tllc Us.Govemnwnt retdnsa non.
cxcludw, roydty.free tie to publish m repro
ducetlw published form of this contribution, a to
allow others to do so, fa U.S, Government
purpoom

I(1 ‘llw k Mm &&ntiflcIAlretay rqueuathat
thopubllsherKmMf’y Wsutick uworh ptformed
WtdsT* auqh of CM Ilspmtrnent of EnBrgy,

@

t

10s dames
●dontltle lmborator~
d *O Udvord’ty ●f Cdlfornk
LOtALAMOS,NQW MhXICO C7S 09

mlnialmw w WI DOCUMENTN mmn ,‘\
1

DEPAM’’MCNT OF EN8ROY
CONTRACT w*740wNo. ao

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

d.

,

A METAFILE FOR EFFICIENT SEQUENTIAL AND RANDOMDISPLAY OF GRAPHICS

by

Theodore N, Reed

ABSTRACT

Graphics metafiles have been in use at the
Los Alamos National Laboratory (LANL) since
early 1977. The first metafile format was defined
in 1976 and has been revised several times to provide
efficient graphics support in the LANL computing
environment . Objectives and current applications of
the Common Graphics System (CGS) Metafile are given.
Details of the format and the random access techniques
incorporated in the CGS Metafile are described.

DEFINITION

A graphics fiietafile can be defined as follows: “A graphi~.s
metafile is a device-independent description of a picture
intended for subsequent display on a graphics output device.”
Two concepts are implicit in this definition. First, the
metafile is a device-independent d~scription of a picture that is
capable of being displayed on a wide variety of graphics de~’ircs.
Second, the metafile is intended for subsequent display; thus, it
is output-only,

HISTORY

ln 1976, the Graphics Group i]t the I.os Alamos N~t ional
Laboratory (LANL) defined a graphics metafile for thr Common
Graphics System (CGS) for use at LANL [1 ,?] . It had 14 bits o!
resolution based on 8-bit bytes. We defined thi+; formal after
performing detailed analysis on a variety of LANL-generated plots
and looking at existing graphics metafiles [3,L]. In 1978, ‘.:t’
modified this metafile to include 15 bits of rcso]lltion based on
a 16-bit word and restructured it to include the ACM/SIGGR.APll
Graphic Standards Planning Committee “CORE” capabilities [5],
This revision was proposed to an interlaboratory task group
consisting of LANL, Sandia National Laboratories, and the Air
Force Weapons Laboratory [6] . After some modification, it was
adopted and callerl the Basic Graphics Package (BGP) Metafil~
format. The current CGS Metafile format Is the BGP format with
extensions to allow ●fficient random access and error recovi’ry.

2

In 1979, the ACM/SIGGRAPH Graphic Standards Planning
Committee published its status report, which included a proposal
for a graphics metafile [7]. This metafile was based on a study
of four existing metafile formats. One of these was the BGP
format from which much of the command structure and format was
derived [8]. Since then, the ANSI X3H3 Technical Committee on
Computer-Graphics Progra&ing Language has formed the X3H33
Virtual Device
metafile and a

Interface Task Group to standardize a graphics
graphics device driver interface I9,1O].

OBJECTIVES

A variety
should satisfy

of objectives that a graphics metafile at LANL
has been established. These objectives include:

o A metafile that maintains the smallest file size possible
while supporting necessary resolution requirements.

o A metafile that is efficient to process,

o A metafile that can be moved across computers of different
word lengths without conversion.

o A metafile that can be moved across different operating
systems wi~hout conversion.

o A metafile mechanism that allows a particular framr to b(I
~~~;~~yed without sequei~t ially processing preceding

o A metafile formal that is extensible,

APPLICATION

The CGS tktafile is currently used in a variety of ways at
LANL (Fig. 1).

o A CGS Metafile can be directed to a graphics terminal by
using one of several gruphics postprocessors. Tnese
postprocessors read the CGS Metafile and use the
appropriate CGS Device Driver to display the picture at
the uscris terminal.

o A graph’rs postprocessor that allows display of selected
frames at the user’s terminal can be used to preview or
select frames before sending the output to a particular
graphics output device,

o A CCS Metafile cP.n be directed LO the Print and Graphics
Expretis Station (PAGES) in the Central Computing Facility,
where either paper or film output is produced, PAGES



functions as a graphics device driver and translates the
metafile format to that required by the particular device
selected.

o The CGS Metafile is used in conjunction with an
interactive session at a graphics terminal to record
selected pictures for later output on a hard-copy device.

METAFILE FORMAT

The CGS Metafile design has provided a compact format that
can be efficiently processed. This format is simple, yet. easily
extensible , to allow later enhancement, The format is based on
multiples of 16-bit words to facilitate processing on most mini-
and microprocessors, as well as many of the larger processors.
This also facilitates the processing of ASCII characters, which
are packed two per word,

~ordinate Positionj_n~ Command Format...——.— ——.-._---

In many graphics applications, most graphitts data consist of
coordinate positioning information, Each coordinate is contained
within one 16-bit word to preserve as much resolution as possible
and still keep the total size reasonably small. Each coordinate
positioning command consists of an x, y, and optional z
coordinate (Fig. 2), Analysis of “typical” graphics output at
LANL indicates that no significant metafile size reduction
results when either the x or the y coordinate is eliminated when
unchanged from the pl.evious position. In fact, because of thl’
extra control bits n’?cessary to ident if,y whether a coordinate
consists of x or y or both instead of a “simplt’” x, y coordinate
pair, either the total size must increase or thu resolution must
decrea~e.

The coordinate positioning commands maintain 15 bits o(’
resolution. This is sufficient for most existing graphic~
devices. These coordinates Rrc transformed and clipprd
normalized device coordinates, Aftur completion of a coordinate
command, the current po~ition is at the specified x, y
coordinates, Either two- ur three-dimensional coordinates can be
output, allowing support of three-dimel~sionnl devict-c. For
three-dimensional devices, H nv.de pan bt’ set arid the coordinillc’
command consistti cf an x, y, and z coordinate.

0~-Code Command Format—— —.— —..— .

The op-code ~~mmand format accommodates the remainder of the
device-independent commands (1’iq, 3) . A] t,hougll this format
provides most of the possible CCS Metafile capabilities, it
comprises a very small portion of the iota] graphics data in the
CGS Metafile. Since this is the casc~, attention has been given



4

to providing a simple, uniform op-code command format that can be
efficiently processed. Each op-code contains a count of the
words associated with it. This simplifies searching the file for
particular op-code commands and allows unsupported op-code
commands to be easily skipped since the number of words
associated with a particular op-code command is immediately
available,

The 7-bi~ op-code is divided into a 3-bit class and a 4-bit
subclass. This allows the various op-codes to be defined in an
organized fashion with 8 major classes, each consisting of up to
16 subclasses. By dividing the op-code command in this fashion,
jump tables can provide efficient processing of the class and
subclass operations.

This format is written on disk as a “bit-stream”; that is,
there is no explicit record or file structure. This allows the
metafile to be moved between compucers of different word lengths
or different operating systems without. conversion. All that is
required to process the metafile is simple 1/0, allowing transfer
of a specified amount of data to or from a particular location on
disk. To avoid word-boundary conflicts, the end of each metafile
is padded with a “no-operation” command so that the file is a
multiple of 60 16-bit v.ords, This forces the file t.o align on
word boundaries for all of the LANL computers (64-, 60-, 32-, and
16-bit words). A multiple of lJ!IO 16-bit words would be necessary
to include computers with word lengths of 36- or ill-bit words,

RANDOMACCESS EXTENSIONS

The CGS Metafile forma: allows efficient. sequential
processing of the CGS Metafile. ‘l’he following additions allow
efi”~cient random access with mil~imal impact on the size ot” th{’
CGS Metafile or the efficiency of sequential processing,

We added an escape function and modified two existing
commands (end-of-data and new-frame) (Fig. 4), The index-blo(.k
escape command contains the 16-bit word disk addresses of th(’
preceding 28 frames. Each address or pointer consists of 32
i its, Word O indicates the escape function and that 59 words
follow, Word 1 indicates the index-block cscapc command, Words
2 and 3 contain the 16-bit word disk address of the preceding
index-block entry. Words 4 through 59 contain the 16-bit -wortl
disk addrees of the preceding 28 frames. An address of zero
indicates the end of this linked list o’ index-block esci+pu
commands.

The end-of-data and new-frame commands each consist o! seven
words, Word O gives the command and word count, Words 1-3 are
syllchranization pattern that force the first 64 bits to a bit
pattern unique to thv end-of-data and new-frame commands. Words
4 and 5 are the 16-bit word disk tiddres:~ of the previous indes-



5

block escape command. Word 6 is the current frame number for the
new-frame command or the total number of frames for the end-of-
data command.

As the file is generated, the disk address of each frame is
saved. This disk address is a 16-bit-word address independent of
the word length of the machine that is generating the CGS
Metafile. When 28 frames have been generated, the index block is
written to disk and its disk address is saved. Each new-frame
command written to disk contains the disk address of the previous
index block. When 28 more frames have been generated, the index
block with the disk address of the previous index block is
written to disk When the job is complete, the last partial
index block is w~itten to disk and is followed by an end-of-data
command containing the disk address of the lest index block.

When the file is sequentially processed, the index-block
escape command is ignored. However, when the file is randomly
processed, a table of frame addresses can be quickly constructed
g:::. 5). The end-of-data command is located at the end of the

It is read and the total frame count is used to give the
table entry for the last frame. The disk address of the last
index block is also obtained from the end-of-data command, This
index block is read and the disk cddress of each frame is stored
in the frame address table. The address of the previous index
block is obtained; it is read, and disk addresses of those frames
are stored in the frame address table, This process cuntinues
until a complete table of frame addresses has been col,structed.
Each frame can now be accessed immediately by disk adciress. The
frame address table can be constructed at a fraction of the cost
of sequential reading of each frame sine? only one disk access is
made for every 28 frames, To further iilc~e”se efficiency, the
index-block escape command could be increased in size in
multiple-+ of 69 16-bit words,

To simplify processing, the end of each frame is padded to a
multiple of 60 lb-~it words so that each new-frame command and
index-block escape command start at the beginning of a word
(independent of computer word length). This ensures that the
addresses will be at the beginning of a word on disk when the
16-bit. word disk addresses are converted to an actual disk
address for a machine of a particular word length.

Randomly Access~ng a Frame..—

To r.lndomly access a frame and get a correct picture, it is
necessary that Ihe current attributes be associated with each
frame. Aftrr thr new-frame command is generated, all of the
current attributes are written, These will he ignored when
processing the file sequentially, but are necessary to establish
the environment when randomly processing frames, The current CGS
Mcta!’ile does not contain segments or color,tfont definitions. A



6

method to suppcrt both sequential and random access of a metafile
containing segments and color/font definitions is discussed under
Future Extensions.

ERROR RECOVERY

When a job aborts, the metafile may not have been properly
tenninaced. When this happens, the last index-block escape
command and end-of-data command have not been w~itten to disk,
The frame address table is constructed by searchi~~g the file from
the end, looking for the new-frame command. Once found, the
pointer to the previous index block can be obtained, and the
frame address table constructed. The file can be searched
forward from this index block, looking for new-frame commands to
complete the last few entries in the frame address table.

FUTURE EXTENSIONS

Segmentation

When segmentation i~ supported in the CGS Metafile, the
following scheme will be adopted to allow efficient sequential
and random processing while maintaining a small file size, A new
escape function will be defined, called the frame environment
block. This will contain all current. att.ribut.es and disk
addresses (in 16-bit words) of all segments. This escape command
will be ignored when processing the file sequentially, but will
be used to providt’ a correct picture when processing the file
randomly. Little additional file space would be required in tht’
llLyp~calll case where there are relativ~ly few large segments,
This same scheme would be used for c~loi- definitions and font
definitions if added to the (IGS Met.afile.

Random Processing,-~Key Identifier

An extension that would facilitate random processin~ is the
addition of a user-specified identifier to the CGS new-frame
subroutine call, This identifier would be writ:en as part of the
CCS Metafile new-frame command, When the frame address table is
constructed, this identifier would be associated with the fr”amv
number and disk address. This identifier would then be usrd as a
key to randomly access a particular frame, thus allowing the user
to specify a logical identifier rather than a frame number,

CONCLUS1ONS

The CGS Metafile is efficient in file size and processing
time for both sequential and random display. We accomplished
t,his by avoiding an explicit record or file structure and



7

incorporating an escape function containing frame pointers in a
linked list. By avoidin~ an explicit record structure, we
achieved portability of the metafile across different computers
and operating systems without conversion. These techniques are
extensible and will be used when supporting additional features
in the CGS Metafile,

REFERENCES

1. R. G. Keller, T. N. Reed, and A. V. Solem, “An
Implementation of the ACM/SIGGRAPH Proposed Graphics
Standard in a Multisystem” Environment,i’ Computer Graphics,
Vol. 12, No. 3, August 1978, pp 308-312.

2. T. N. Reed, “The Common Graphics System,” Corn uter Sciences
and Services Division Technolo Review, Los A amos National

tiP==J7W:z20.~o~yvreport LAS-

3. T. Wright “A Schizophrenic System Plot Package,” Computer
Graphics, VCI. 9, No. 1, Spring 1975, pp 252-255. —

4, D. Groot, “GPGS 1.6 Bits Device Independent Picture Code,” T,
H. Delft and Informatica, Faculty of Science, lJniversity of
Nijmegen, The Netherlands, October 1975.

5. “Status Report of the Graphic Standards Planning Committee
of ACM/SIGGRAPH”, Computer Graphics, Vol. 11, Number 3, Fall
1977.

6, T. N. Reed, “The Common Graphics System - An Implementation
of the ACM/SIGGRAPH Proposed Graphics System,” VIM-28, April
1978, pp 138-140.

——

7. “Status Report of the Graphic Standards Planning Committee
of ACM/SIGGRAPH”, Corn uter Graphics, “’o]. 13, Number 3,

+August 1979, Part . — —

8. J, R. Warner, “Device Independent Intermediate Display
~~l::i” Computer Graphics, Vol. 13, No. 1, March 1979, pp

. ,

9. “X3H33 SD-3 Proposal for an ANSI X3 Standards Project for
the Computer Graphics Virtual Device Metafile,” CBEMA, 1828
L Street NW, Washington, DC 20036, November 1980.

100 “X3H33 SD-3 P~oposal for an ANSI X3 Standards Project for
the Computer Graphics Virtual Device Interface,” CBEMA, 1H28
L Street NW, Washington, DC 20036, September 1980.



., ---

0PAGES

~JCGS
lXVl CE CONTROL

/“l\

aCGS
OEVICE ORl VER

I ● @oI
CGS

METAFILE
I

““Y
I
*

1NTERACT I VE
TERMINALS

a● *O

OT*R
DEVICES

Figure 1

Graphical Software Co~nents at LAN1.—- —.. . . . -- .—. . ------ .- —..-.-. —-- .. . .



ioi x-coordinate (15 bits) i
I

ii
I

. 115 114 113 112 Ill 110I 9 I 8 1 7 I 61 5 14 I 3: 2 ~1 : 0:
I

Word O

r~— ?
II y-coordinate (15 bits) II

Word 1

z-coordinate (15 bits)
m

I
I
I
,

l15i14 113 112 111 110 19 I 8 I 7 I 61 5 14 I 3 I 2 I ] I o i
I 1

Word 2 (3D mode only)

Figure 2
Coordinate Positioning ConnnandFormat

1 I I I r
I

Ill class ! subclass :
II

Op word count (O-255) ~
I I

15 114 113 !12 Ill :10 I 9:8i7 6151413121110!I
I

op code word count

Word O

i

i
op word 1 I

I
I

15 114 113 112 111 110 I 9 [ 8 I 7 I 61514 3tppo;I -j
Word 1

●

.

.

1 ~
I
I

op word n j

115114113 ]12111110191817 161514 1 312: ]:0:
I

Word n

Figure 3
Pomst



%

ESCAPE I 59 —
INDEX --BLOCK (IB)

MSB INDEX-BLOCKPOINTER
LSB INDEX-BLOCKPO]NTER
MSB FRAME POINTER
LSB FRAME POINTER

MSB FRAME POINTER
LSB FRAME POINTER

*

NEW-FRAME I 6.— 1
SYNC PATTERN T
SYNC PATTERNI 7
SYNC PATTERN Y

MSB INDEX-BLOCK POINTER
LSB INDdX-BLOCK POINTER

FRAME NUMBER

END-OF-DATAI 6 1
SYNC PATTERNk I
SYNC PATTERNr
SYNC PATTERN I

MSB INDEX-BLOCKPOINTER
LSB INDEX-BLOCK POINTER

TOTALFRAMES/

Figure 4
Index-Block Escape, New-Frame, and End-of-Date Commands



b * ESCAPE1
INDEX-BLOCK

~ I-BPOINTER I
FRAME POINTER

●
a‘19
8

FRAME POINTER

[ NEW--FRAME k

--RmE1
NEW FRAME *, ,

SYNC PATTERN
d I-BPOINTER I

I FRAML NUMBER I

ESCAPE
=NDEIbBLOCK I

- I-BPOINTERr
FRAME POINTER-

●

\

END-OF-DATAL
SYNC PATTERN1 7

~ I-BPOINTER \
[
TOTALFRAMES

Figure S
CGS Mctnfile Random Access Linked List Structure


